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The potent polyketide constituent of the annonaceae plant fam-
ily,1 (+)-cardiobutanolide 1, pharmacologically active2 product was
isolated from the stem bark of Goniothalamus cardiopetalus, along
with three known styryllactones.3 Styryllactones possess pesti-
cidal, ratogenic, and cytotoxic activity against human tumor cell
lines.2 The first total synthesis of cardiobutanolide was reported
by Murga and co-workers by employing an anti-selective boronate
aldol reaction of L-erythrulose derivative.4a So far, four total
syntheses and a formal approach have been disclosed toward the
synthesis of 1 since the isolation.4,5 Of the four total syntheses of
1, we reported a chiron approach-based strategy, using diacetone
D-glucose5 as the starting material involving the key steps of Mits-
unobu stereoinversion, ethyl diazoacetate addition, and selective
reduction of the ketone. In continuation with our program on the
total synthesis of bio-active natural products,6 we revisited the
synthesis of cardiobutanolide based on an olefin cross-metathesis
approach starting from D-mannitol. Herein, we report a flexible
and practical synthesis of (+)-1, the key features of which include
olefin cross-metathesis and Sharpless asymmetric dihydroxylation.

With renewed interest we undertook the synthesis of this mol-
ecule in a bid to develop a schematically different route viz. olefin
cross-metathesis protocol. Since styryllactones also possess,
amongst varied biological activities, cytotoxicity with remarkable
anti-tumor properties,2,3 congeners of 1 may have comparable pro-
file. Consequently, it was thought that the presence of diverse aryl
moieties may contribute or amplify the activity. Taking a cue from
ll rights reserved.

: +91 40 27160387.
shna).
this logic, a flexible strategy was developed that could potentially
generate a library of natural product-like molecules by adopting
an olefin cross-metathesis reaction between a variety of aryl vinyl
carbinols (or any predesigned aryl constituents) and vinyl butyro-
lactone moieties, the product(s) of which on asymmetric dihydr-
oxylation reaction with either AD-mix-a or -b afforded the whole
gamut of stereoisomers as well. Alongside this, the first synthesis
of C(5), C(6)-epi-cardiobutanolide 15, a non-natural product is also
reported emanating from the minor product of asymmetric dihydr-
oxylation reaction.

The retrosynthetic analysis of (+)-1 is shown in Scheme 1. The
envisioned strategy derives C(3) and C(4) stereocenters of 1 from
C(3) and C(4) of D-mannitol while other stereocenters are differ-
ently generated. Thus, compound 1 could be obtained from the
corresponding allylic alcohol 2 by an asymmetric dihydroxylation,
which in turn could be obtained from olefin cross-metathesis reac-
tion between vinyl 3-hydroxy butyrolactone derivative 3 and phe-
nyl vinyl carbinol 4a. The butyrolactone derivative 3 could be
synthesized from D-mannitol, while the phenyl vinyl carbinol 4a
can be accessed easily from Sharpless kinetic resolution protocol.

Thus, the synthesis of 1 began following the literature proce-
dure (Scheme 2). For instance, the known7 6 obtained from D-man-
nitol, was subjected to hydroboration followed by the oxidation
with H2O2 in THF resulted in the desired regioisomer as the major
product 7a in a ratio of 85:15 (65%). Alcohol 7a was protected
(TPSCl/imidazole/CH2Cl2/0 �C to rt) as its TPS ether 7b (95%). Cleav-
age of the 1,2-o-isopropylidine group with ZnNO3

8 in acetonitrile
at 60 �C provided the diol 8, followed by a one-step conversion
(TPP/imidazole/I2/toluene/100 �C) that provided the olefin 5a
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Scheme 1. Retrosynthetic analysis.
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Scheme 2. Reagents and conditions: (a) (i) BH3�DMS, THF, 0 �C, 3 h; (ii) H2O2, aq NaOH, 0 �C, 4 h, 65% (over two steps); (b) imidazole, TPSCl, CH2Cl2, 0 �C to rt, 30 min, 95%; (c)
ZnNO3, CH3CN, 60 �C, 8 h; (d) PPh3, imidazole, I2, toluene, 100 �C, 3 h, 60% (over two steps); (e) TBAF, THF, 0 �C, 2 h, 80%; (f) PDC, DMF, rt, overnight, 50%; (g) PTSA, MeOH, 8 h,
70%; (h) imidazole, TBSCl, CH2Cl2, 2 h, 85%.
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(60%, over two steps). The deprotection (TBAF/THF/0 �C) of silyl
ether 5a resulted in alcohol 5b (80%), which was then oxidized
(PDC/DMF/rt/12 h) to acid 9 (50%). Treatment of acid 9 with
PTSA/MeOH resulted in the deprotection of 3,4-o-isopropylidine
group with the simultaneous lactone ring formation to afford 10
(70%).

On the other hand, the fragment 4a was synthesized starting
from acrolein (Scheme 3), which on Grignard reaction (PhMgBr/
THF/0 �C to rt) gave the phenyl vinyl carbinol9 4 (75%). Later, 4
on Sharpless kinetic resolution furnished enantiomerically pure
phenyl vinyl carbinol 4a (40%).10

Olefin cross-metathesis6a,11 reaction (Grubbs’ cat-II/CH2Cl2/rt)
between the lactone 10 and phenyl vinyl carbinol 4a in a 1:1.5
OH
O

H

411

ba

Scheme 3. Reagents and conditions: (a) PhMgBr, THF, 0 �C, 40 min, 75%; (b) (
ratio resulted in 12 (70%) as an exclusively E-isomer without self
dimerisation of lactone (Scheme 4). But we were unable to sepa-
rate allyl alcohol 12 in pure form due to its co-elution with Grubbs’
catalyst. Hence, a practical way thought out by us was to protect
(TBSCl/imidazole/CH2Cl2/rt/2 h) the 3-hydroxyl group of the
lactone 10 as its TBS ether 3 first and conduct the cross-metathesis
reaction. Accordingly, the cross-metathesis reaction between lac-
tone 3 and phenyl vinyl carbinol 4a under the above-cited reaction
conditions furnished compound 2 (60%) as an exclusive E-isomer.
Later, allyl alcohol 2 was purified and subjected to asymmetric
dihydroxylation to result in an unisolable mixture of products.
Consequently, allyl alcohol 2 was treated with TBSCl under con-
ventional conditions to afford disilyl ether 13 (80%). Asymmetric
OH
O

OH

+

a4 4b

+)-DIPT (0.6 equiv), Ti(OiPr)4 (0.5 equiv), CHP (0.6 equiv), CH2Cl2, �24 �C.
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Scheme 4. Reagents and conditions: (a) Grubbs’ II (10 mol %), CH2Cl2, rt, 60%; (b) imidazole, TBSCl, CH2Cl2, 2 h, 80%; (c) AD-mix-b, OsO4, tBuOH/H2O (1:1), 70%; (d) Amberlyst
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dihydroxylation of 13 with AD-mix-b provided the desired product
as the major isomer 14a (70%) in a ratio of 90:10. Treatment of the
major isomer with Amberlyst 15 resin in acetonitrile gave the de-
sired natural product 1 {½a�25

D +7.4 (c 0.30, MeOH)} in 90% yield.
Similarly, the minor isomer 14b was also treated with Amberlyst
15 resin in acetonitrile to give the diastereoisomer 15 in compara-
ble yields. The physical and spectroscopic data of the synthetic
sample 1 were identical to those of the reported natural and syn-
thetic products.4,5,12 Though the overall yield obtained herein is
5% through a 12-step sequence in comparison to 9% obtained in
a 11-step linear synthesis,4b,5 the combinatorial advantages of
the strategy remain intact.

In conclusion, we have performed a divergent, stereoselective
synthesis of (+)-cardiobutanolide by means of a versatile strategy.
Olefin cross-metathesis, asymmetric dihydroxylation, and Sharp-
less kinetic resolution were the key steps involved to accomplish
the synthesis of (+)-cardiobutanolide 1.12
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1H), 2.34–2.25 (m, 1H). Compound 1: White crystalline solid. ½a�25

D +7.47 (c 0.30,
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1760, 1471, 1210 cm�1; HRMS: calcd m/z 291.0844 (C13H16O6Na). Found m/z
291.0832, ppm error �4.3224.


